
Software Technology to Enable Reliable
High-Performance Distributed Disk Arrays

Second Year Progress Report

Michael S. Warren, Ryan Joseph, John Wofford

Mail Stop B227
Theoretical Astrophysics

Los Alamos National Laboratory
Los Alamos, NM 87545

LA-UR 07-5798

Abstract

It is currently possible to construct a single-node RAID storage system with a 14 Terabyte capacity
using commodity serial-ATA hard disk drives for less than $10,000. A cluster of such systems (a
distributed disk array) would be able to provide over a petabyte of storage for less than 1 million
dollars. Obtaining reliablity and good performance from such a system is the focus of our project.

Over the course of this project, we have established a number of testbed and production systems
containing over 200 Terabytes of storage. Significant progress to date includes detailed failure
statistics on a variety of disk drives, performance benchmarks on a number of different systems,
modifications to the Linux ATA-over-Ethernet (aoe) driver to reliably support RAID-5 and RAID-
6 arrays across multiple cluster nodes, and development of the InfiniBlok Linux device driver to
support block-level I/O over Infiniband devices. A system developed in the course of this project
has been named as a finalist for the SC07 storage challenge.



1 Introduction

Persistent data storage is a fundamental prerequisite for all information science and technology
projects. The advent of commodity microprocessors with adequate floating-point performance and
low-priced fast ethernet switches contributed to the emergence of Beowulf clusters in the mid-90s,
which revolutionized parallel computing at the departmental scale [1, 2, 3]. We are currently in
the midst of a similar revolution in scalable data storage, due to the dramatic decline in the price
of commodity disk drives and 10-gigabit networking technologies.

Vast amounts of relatively inexpensive storage offer significant opportunities to develop new
approaches to scientific problems, most of which will be difficult to predict in advance. The cost
per Gbyte for SATA disk storage is currently about $0.35 for 1 Terabyte drives. We have demon-
strated single-node fault-tolerant 14 Terabyte servers for a total cost of under $10k (see Table1).
Used in a parallel cluster environment, a Petabyte disk array with achievable read/write bandwidth
that greatly exceeds available Gigabit local and wide-area networking technology is possible.

There are current commercial products which provide highly-reliable and high-performance
disk storage (Network Appliance and Panasas, for example). However, these products cost about
a 5-10x premium to the equivalent storage using commodity-off-the-shelf components (which is
perhaps not coincidentally the typical factor between the cost of a Beowulf system and a commer-
cial supercomputer). Additional costs are accrued over the life of the commercial product due to
their proprietary nature and maintenance contracts. Additionally, the greater CPU/storage ratio in
a DDA offers techniques which are not possible in traditional RAID arrays.

As larger and more precise surveys of the Universe are performed, connecting the observational
data with a consistent theoretical understanding of the distribution and properties of galaxies, stars
and other objects becomes more difficult. During the next decade large projects will generate more
than 100 times as much observational data as has been gathered in all of our prior history. A
precise understanding of the systematic errors in both the observations and our models is critical
to the determination of the fundamental parameters of the Universe.

We have already amassed an on-line collection of a number of large astronomical datasets (DSS
digitized Schmidt plates, SDSS imaging and spectroscopy, FIRST radio survey, USNO-B1.0 object
catalog, 2MASS, etc.) with the intention of collecting and organizing the world’s astronomical
data and making it universally accessible and useful. These observational datasets, along with
simulation data, currently comprise over 100 Terabytes of information. This astronomical data
repository provides a unique resource for testing the data storage systems which are the focus of
this project.

In the same way in which special-purpose telescopes are now required to obtain the best cat-
alogs of objects in the sky, a focused effort involving state-of-the-art parallel computer hardware
and software combined with theoretical and observational expertise is required in order to model
the Universe which led to this observed distribution of stars, dust and galaxies.
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Figure 1: A figure showing the source density in the Sloan Digital Sky Survey Data Release 5
Object Catalog. Data analysis for this figure was performed at LANL on a prototype of the system
described here. The geometry is an equal-area HEALpix decomposition of the celestial sphere.
The pixel intensity is proportional to the log of the number objects in the pixel. The dark bands
are gaps in the survey, most of which have been filled in in the latest data release (DR6). The raw
data consists of object catalogs which contain over 200 million objects in over 300,000 individual
files. Each object comprises 2732 bytes of data, for a total object catalog data volume of about 0.5
Tbyte in this region of the sky.

2 Progress During Year 2

2.1 Reference “I/O Brick” design

We investigated a number of storage systems in order to determine the optimal “building block”
for larger systems. Our current reference design is listed in Table1, which has a storage capacity
of 14 Tbytes at a cost of about $10000. We currently have 8 such systems, which will be the
testbed hardware for further software development. I/O read bandwidths for each node are about
750 Mbytes/sec, while writes are about 350 Mbytes/sec with the 3ware card and 630 Mbytes/sec
with the Areca card (see Table3).

2.2 Hardware Monitoring

Recent work on over 100,000 disk drives [4] have gathered failure statistics on commodity disk
drives under real-world conditions, and demonstrate that the failure rate of the more reliable recent
models is about 3% per year. These statistics are consistent with our own (relatively) limited
experience. While higher than the MTBF claims of manufacturers, such a failure rate is well
within the ability of a part-time system administrator to manage (i.e. a petabyte array with 1000
drives would suffer a disk failure about every 12 days).
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Qty. Price Ext. Description

2 290 580 AMD Opteron dual-core 2214 2.2GHz
16 355 5680 Hitachi 1TB SATA 7200RPM
1 45 45 PCI Video Card
1 895 895 3ware 9650SX-16 RAID 6 card
1 475 475 TYAN S2915A2NRF 4x PCIe
4 95 380 Kingston 1GB DDR2-667 ECC/REG
1 25 25 Addonics IDE to CF adapter
1 42 42 4GB Compact Flash (system disk)
1 795 795 Myricom Myri-10g network card
1 1159 1159 RM3U316 16x SATA chassis
1 72 72 Assembly
Total $10148 $724 per Tbyte

Table 1: 3U Rackmount storage system pricing, July 2007

2.3 ATA over Ethernet

This project depends fundamentally on scaling disk storage from a single system to a parallel
system. The networking abstraction used to communicate between systems is an important facet
of this approach.

The iSCSI specification was developed in order to standardize communication with network
attached SCSI devices. In the first year of our summer intern, Ryan Joseph, investigated all of the
major iSCSI implementations to see if they would provide a solid foundation to proceed from. The
conclusions from this research were that iSCSI was over-engineered, and no robust implementa-
tions currently exist.

Our initial approach used the “Network Block Device” (a standard part of the Linux kernel)
which provided the functionality required for network attached storage. This approach was doc-
umented in our first year progress report. After some modifications to the driver to make it more
robust, we were able to implement a RAID system using nbd over multiple storage nodes. Af-
ter some experience with this system, the nbd approach was abandoned for the more mature and
reliable ATA over Ethernet (aoe).

AoE is used to achieve a very basic level RPC mechanism between a client and an ATA device
server (www.coraid.com/documents/AoEr10.txt). We have demonstrated the ability to create
multiple-node disk arrays using the Linux aoetools. The log below shows a 24 Tbyte software
RAID0 filesystem created out of three storage nodes.

# mdadm --create /dev/md0 --chunk=128 --level=0 --raid-devices=3 \
/dev/sda1 /dev/etherd/e0.0 /dev/etherd/e0.1

mdadm: array /dev/md0 started.

# cat /proc/mdstat
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Figure 2: On the left, seven 20-packs of Hitachi 1TB drives (140 Terabytes) ready to be unpacked
and installed. On the right, enabling technologies: an Areca 16-port RAID card, a Myricom 10-
gigabit network card, and a Hitachi 1 Terabyte hard drive.

Personalities : [raid0]
md0 : active raid0 etherd/e0.1[2] etherd/e0.0[1] sda1[0]

18754129536 blocks 128k chunks

# mkfs.xfs -f /dev/md0; mount /dev/md0 /raid

# df -h /raid
Filesystem Size Used Avail Use% Mounted on
/dev/md0 24T 528K 24T 1% /raid

2.4 InfiniBlok

InfiniBlok is a light-weight kernel module developed by John Wofford at LANL that allows a
remote storage device to appear as if it were present in a local machine. It exploits all of the
advantages of InfiniBand to give low latency and low CPU overhead. The goal is to create a
protocol similar to ATA over Ethernet (AoE) or Network Block Devices (NBD) that will make use
of InfiniBand RDMA and reliable connections. Like NBD, InfiniBlok speaks the language of the
Linux kernel directly; it translates kernel operations into packets, sends them across the InfiniBand
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Figure 3: A 3U 16-disk RAID storage node. A Petabyte storage system using technology currently
available would consist of 72 such nodes, and would cost less than $1M.

link, and translates them back into kernel operations. All data transfers use RDMA. Unlike either
AoE or NBD, InfiniBlok happens in the kernel for both client and server connections. In fact, both
client and server end are handled by the same Linux kernel module.

The InfiniBlok protocol is very simple. It consists of three packets:geometry(GEO),make
requests(MRQ) andcompletion(CMP). When a device is served InfiniBlok attaches to the block
device, giving InfiniBlok direct access to send and receive commands to and from the physical
storage device driver. InfiniBlok then listens for connections. After the block device is claimed by
the server, a client machine can connect, giving it access to that block device as if it were local to
the client machine.

When an InfiniBand reliable connection is established between a server (containing storage)
and a client (connecting to storage) the server sends a GEO packet describing the block device
to be served, including the device’s capacity, hardware block size and CHS geometry (so that the
GETGEO ioctl can be supported). Once the client receives the GEO packet it creates a block
device on the client end that mimics the block device on the server end.

When the client’s block device receives a read or write request the kernel passes the InfiniBlok
driver abio structure containing buffers that are either to be filled with data from the storage device
(read request) or be transfered to the storage device (write request). InfiniBlok maps all of thebio
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buffers for RDMA transfer and translates all relevant information from thebio into an MRQ packet
which it sends to the server.

When the server receives the MRQ it acts differently depending on whether the request is a
read request or a write request. If the request is a read request InfiniBlok creates abio structure
on the server end with empty buffers and passes thatbio to the driver for the physical storage
device. The storage device driver will then fill the empty buffers with data from the disk. Once the
storage device driver has processed the submittedbio it notifies InfiniBlok of the completion status
including possible errors and how many bytes were transfered. Next, InfiniBlok RDMA writes
all of the data from the server sidebio into the client sidebio. When these RDMA transfers are
complete a CMP packet is sent from the server to the client indicating all of the information that
was returned by the actual storage driver (error status, number of bytes transfered).
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Figure 4: InfiniBlok protocol

If the request is a write request similar processes happen but in a slightly different order. When
the server receives the MRQ it begins RDMA read transfers from the clientbio into a serverbio.
Once the transfers are complete the server sidebio, which now has buffers full of information to be
written to disk, is submitted to the storage device driver. When the storage device driver finishes
processing thebio a CMP packet is sent immediately to the client containing the same information
as for a read request.

When the client receives a CMP packet it then returns that same information to the kernel re-
garding the original request, signaling the completion (or error) of the requested operation. The
InfiniBlok driver can handle many such requests concurrently. The number of simultaneous client
and server connections is limited only by memory (system and InfiniBand), and the driver is de-
signed to make full use of multiprocessor systems.

As a result of speaking the language of the kernel directly, InfiniBlok creates a block device on
the client end which is in every way indistinguishable from a local device. The InfiniBlok device
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can be partitioned, formatted, mounted or even used as a target for LVM or software RAID. This
latter use is of particular interest. LVM or software RAID can be used to combine a number of
InfiniBlok devices into a single high speed, low latency block device which requires little CPU
overhead.

InfiniBlok has distinct advantages over its Ether-

Figure 5: Six 3U 16-disk RAID storage
nodes, with a raw storage capacity of 96
Tbytes. On top of the storage nodes is
an HP 6-port 10-GigE Procurve switch.
Configured as a RAID6 x RAID5 disk ar-
ray, the aggregate storage of the system is
70 Tbytes.

net based competitors, AoE and NBD, in its ability to
use the RDMA and built–in reliable connection fea-
tures of InfiniBand. Further, since packets do not need
to carry the data that is being transferred, large bun-
dles of RDMA transfers can be sent in a single MRQ,
allowing fewer packets to be transmitted. Even as Eth-
ernet speeds increase and latencies decrease, these ad-
vantages should keep InfiniBlok competitive.

The major alternatives which use InfiniBand in-
clude NFS over RDMA, SCSI RDMA Protocol (SRP)
and iSER. NFS over RDMA carries with it the large
protocol overhead of NFS and does not allow the cre-
ation of a block device on the local machine, mak-
ing it a fundamentally different type of storage so-
lution. SRP and iSER are similar protocols in that
they both communicate by passing SCSI commands.
SRP ties into the SCSI layer, while supplies a set of
extensions for the use of iSCSI. Both protocols pro-
vide a robust set of features, and both use RDMA to
transfer data. There are two main differences between
InfiniBlok and SRP or iSCSI. The first difference is
that InfiniBlok ties into the simple command set of the
Linux block layer while SRP and iSCSI use the SCSI
stack. The second difference is that InfiniBlok’s pro-
tocol is much lighter weight than SRP and iSCSI. In-
finiBlok assumes a trusted network and a minimal set
of features requiring no login and only basic read and
write functionality. In the spirit of keeping it simple, InfiniBlok may provide a straightforward and
reliable open-source alternative to the more complex existing solutions.

2.5 Benchmarks

We evaluated a number of systems in order to quantify the performance of single disks, as well as
different types of hardware and software RAID5/RAID6 systems.
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Write Re-Write Read Re-Read
3ware Hardware RAID-0 27.44 20.09 62.73 61.24
3ware Hardware RAID-5 27.44 20.09 62.73 61.24
3ware Software RAID-5 95.99 81.28 230.18 226.63
NBD baseline, 1kb BS 20.76 19.14 78.63 79.19
14-disk NBD RAID-5 91.23 93.46 56.38 56.78
tmpfs RAID-0 107.96 125.31 95.78 96.77
tmpfs RAID-5 81.07 87.52 90.86 90.90

3ware Software RAID-0 282.06 160.19 389.53 390.14
3ware Hardware RAID-5 161.26 98.77 254.21 257.66
3ware Software RAID-6 81.37 73.36 176.58 174.71
Highpoint Software RAID-0 353.18 247.63 443.32 445.43
Highpoint Software RAID-5 147.90 92.31 207.90 208.21
Apple Xserve RAID-5 43.02 40.73 133.77 147.33

Table 2: Hardware Storage Benchmarks (all data in Mbytes/sec). These data were gathered from
2003-2006, and show performance of the previous generations of PCI-X based hardware, and the
Linux network block device across Gigabit Ethernet.

2.6 Single Node Performance

The maximum sustained read rates from the current generation of SATA disk drives now exceed
75 Mbytes/sec.

# hdparm -tT /dev/sdb

/dev/sdb:
Timing cached reads: 1956 MB in 2.00 seconds = 978.72 MB/sec
Timing buffered disk reads: 226 MB in 3.00 seconds = 75.31 MB/sec

Write Re-Write Read Re-Read
3ware 9650SE-16ML RAID6 313.3 381.0 763.6 763.3
Areca ARC-1261 RAID6 635.5 665.3 738.2 737.9

Table 3: Current hardware Storage Benchmarks (all data in Mbytes/sec). File size used was 1
Tbyte. These data were gathered on the prototype system described in Table1 in July 2007,
and show performance of the current generation of PCI Express based hardware using 1 Terabyte
Hitachi SATA drives.
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2.7 Network Performance

Netperf results between two storage nodes with Myricom 10-gigE hardware was measured at
8893 Megabits/sec using theTCP SENDFILE TEST. The myri10ge driver was recompiled from
the sources distributed from Myricom, and optimized according to the instruction posted at their
web site.

Write Re-Write Read Re-Read
NFS 178.9 187.3 136.6 133.6
AoE 253.0 253.2 134.7 135.0
InfiniBlok 432.7 323.2 184.7 185.6

Table 4: Networked storage performance between two storage nodes (Mbytes/sec) using iozone.
NFS used default settings for Fedora Linux version 7. ATA over ethernet used the default ver-
sion shipped with FC7. NFS and AoE results used a Myri-10g card. Infiniblok used Mellanox
Technologies MT25208 InfiniHost III cards. Read rates are a factor of 4-5 below the potential
performance, indicating substantial opportunity for optimization to improve the results.

3 Plans for Year 3

In the short term, we will be producing a report to submit to the SC07 storage challenge in Novem-
ber 2007 (seesc07.supercomputing.org/schedule/event detail.php?evid=11239) to show-
case our approach in a friendly competition [5]. Our approach to the final year of this project will
be driven primarily by application needs in the area of astronomy and astrophysics. In particular,
optimizing the analysis of large astronomical image datasets, and computing statistics from large
N-body simulations have already pointed us at the most critical areas to optimize. The two main
areas to improve are performance and reliability.

Much progress has been made with Linux kernel developers addressing “deadlock” problems
common to network storage applications. Several interesting subtleties exist in the interaction
between the block layer and the network layer in the Linux kernel. In particular, when the system
becomes short on memory, dirty pages must be written to their backing store. However, if the act
of writing those pages requires a memory allocation (as it normally would when writing to a TCP
socket) the system will deadlock. A good summary of the problem and solution is available at
http://lkml.org/lkml/2006/8/8/349.

The most significant performance bottleneck in the analysis of astronomical datasets appears
to analogous to filesystem fragmentation. The outstanding performance of current RAID systems
depends on having large contiguous blocks of data on the storage system, so that parallel reads
and disk read-ahead can maximize the utilization of the I/O system. Unless extreme care is taken
in the transfer of data onto the system (which requires knowledge of the order in which files will
be analyzed) the files tend to become randomly distributed on the device, which causes the read-
ahead to fetch a large amount of data which is not necessary. The simplest solution is to encourage
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the use of large files (Gbytes, rather than Mbytes). Alternatively, for support of legacy datasets
like SDSS, it should be possible to write software analogous to the “defragmenter” necessary for
reasonable performance with primitive filesystems to re-arrange files into the optimal order. In our
case, however, it is not fragmentation within a file which is the problem, but disorder in the overall
organization of files being fed to the analysis pipeline.
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disk drive population. InProceedings of the 5th USENIX Conference on File and Storage
Technologies (FAST07), 2007.

[5] M. S. Warren and J. Wofford. Astronomical data analysis with commodity components. Fi-
nalist for the SC07 Storage Challenge, Reno NV, Nov. 10-16, 2007.

11


	Introduction
	Progress During Year 2
	Reference ``I/O Brick'' design
	Hardware Monitoring
	ATA over Ethernet
	InfiniBlok
	Benchmarks
	Single Node Performance
	Network Performance

	Plans for Year 3

